ST.ANNE’S

COLLEGE OF ENGINEERING AND TECHNOLOGY
ANGUCHETTYPALAYAM, PANRUTI - 607106.

CREATE

W
NON
74 A

ILLUMINATE

o

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

JULY 2018 — NOV 2018 / ODD SEMESTER

SUBJECT CODE/NAME: CS8382, DIGITAL SYSTEMS
LABORATORY

YEAR/SEM: II/11I BATCH: 2017 - 2021

AS PER ANNA UNIVERSITY, CHENNAI REGULATION 2017

LIST OF EXPERIMENTS

. Verification of Boolean Theorems using basic gates.

Design and implementation of combinational circuits using basic gates for arbitrary
functions, code converters.

Design and implement Half/Full Adder and Subtractor.
Design and implement combinational circuits using MSI devices:
[1 4 — bit binary adder / subtractor
[1 Parity generator / checker
[1 Magnitude Comparator
(1 Application using multiplexers
Design and implement shift-registers.
Design and implement synchronous counters.
Design and implement asynchronous counters.

8. Coding combinational circuits using HDL.

9. Coding sequential circuits using HDL.

10. Design and implementation of a simple digital system (Mini Project).

STUDY OF LOGIC GATES

VERIFICATION OF BOOLEAN
THEOREMS USING DIGITAL
LOGIC GATES

CODE CONVERTOR

ADDER AND SUBTRACTOR

4-BIT ADDER AND SUBTRACTOR

PARITY GENERATOR &
CHECKER

MAGNITUDE COMPARATOR

MULTIPLEXER AND
DEMULTIPLEXER

SHIFT REGISTER

SYNCHRONOUS AND
ASYNCHRONOUS COUNTER

CODING - VERILOG & VHDL

BASIC LOGIC GATES

COMBINATIONAL AND
SEQUENTIAL CIRCUITS

Ex.No.-1a STUDY OF LOGIC GATES

AlIM:
To study about logic gates and verify their truth tables.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION
AND GATE IC 7408

OR GATE IC 7432
NOT GATE IC 7404
NAND GATE 2 I/P IC 7400
NOR GATE IC 7402
X-OR GATE IC 7486
NAND GATE 3 I/P IC 7410
IC TRAINER KIT -

PATCH CORD -

o I B IS S Bl Sl A

THEORY:

Circuit that takes the logical decision and the process are called logic gates.
Each gate has one or more input and only one output.

OR, AND and NOT are basic gates. NAND, NOR and X-OR are known as
universal gates. Basic gates form these gates.

AND GATE:

The AND gate performs a logical multiplication commonly known as AND
function. The output is high when both the inputs are high. The output is low level
when any one of the inputs is low.

OR GATE:
The OR gate performs a logical addition commonly known as OR function.

The output is high when any one of the inputs is high. The output is low level when
both the inputs are low.

NOT GATE:
The NOT gate is called an inverter. The output is high when the input is low.
The output is low when the input is high.

AND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both
inputs are low and any one of the input is low .The output is low level when both
inputs are high.

NOR GATE:
The NOR gate is a contraction of OR-NOT. The output is high when both
inputs are low. The output is low when one or both inputs are high.

X-OR GATE:
The output is high when any one of the inputs is high. The output is low

when both the inputs are low and both the inputs are high.

PROCEDURE:
(1) Connections are given as per circuit diagram.
(i) Logical inputs are given as per circuit diagram.
(ili) Observe the output and verify the truth table.

AND GATE
SYMBOL PIN DIAGRAM

U

T408N

TRUTH TABLE

AB

A
0
0
1
1

OR GATE

SYMBOL : PINDIAGRAM :

A

1

B

TRUTH TABLE

A
0
0
1

1

NOT GATE

SYMBOL PIN DIAGRAM

A

e v
S

TRUTH TABLE :

EX-OR GATE

SYMBOL PIN DIAGRAM

A Y = AB + AB
B e —

7436N

TRUTH TABLE :

2-INPUT NAND GATE

SYMBOL PIN DIAGRAM

A

TRUTH TABLE

3-INPUT NAND GATE

SYMBOL : PINDIAGRAM :

U

7410

TRUTH TABLE

A
0
0
0
0
1
1
1
1

= o~ (=~)

NOR GATE

SYMBOL : PINDIAGRAM :

TRUTH TABLE

RESULT:

The logic gates are studied and its truth tables are verified.

Ex.No.-1b VERIFICATION OF BOOLEAN
THEOREMS USING DIGITAL LOGIC GATES

AIM:

To verify the Boolean Theorems using logic gates.

APPARATUS REQUIRED:

SL. NO. COMPONENT SPECIFICATION
AND GATE IC 7408
OR GATE IC 7432
NOT GATE IC 7404
IC TRAINER KIT -

As per
CONNECTING WIRES required

THEORY:

BASIC BOOLEAN LAWS

1. Commutative Law

The binary operator OR, AND is said to be commutative if,
1. A+B = B+A
2. A.B=B.A

2. Associative Law

The binary operator OR, AND is said to be associative if,
1. A+(B+C) = (A+B)+C
2.A.(B.C)=(A.B).C

3. Distributive Law

The binary operator OR, AND is said to be distributive if,
1. A+(B.C) = (A+B).(A+C)
2. A.(B+C) = (A.B)+(A.C)

4. Absorption Law
1. A+tAB=A
2. A+AB = A+B

5. Involution (or) Double complement Law
1L.A=A

6. Idempotent Law
1. A+tA=A
2.AA=A

7. Complementary Law
1. A+A'=
2.AA' =0

8. De Morgan’s Theorem
1. The complement of the sum is equal to the sum of the product of the individual
complements.
A+B=AB
2. The complement of the product is equal to the sum of the individual complements.
A.B=A+B

Associative Laws of Boolean Algebra

A+(B+C)=(A+B)+C

Ae(BeC)=(AeB)sC

Proof of the Associative Property for the OR operation: (A+B)+C = A+(B+C)

>

(A+B) (B+C) A+(B+C) | (A+B)*C
0 0 0

el =l =l = o]

—\—\OO—x—\OOUJ

Proof of the Associative Property for the AND operation: (A-B)-C = A-(B-C)

(A-B) (B-C) A- (B-C)
0

__k_k_\oooob
__Loo__\ocm
o= O=0=0|0

== 1000|000
===l (e]

Distributive Laws of Boolean Algebra

Ae(B+C)=zAeB+AeC
AB+C)=AB+AC

)

Proof of Distributive Rule

) -]
r
m
p -]
()

(A-B)+ (A-C)

A-(B+C)

0

0

alala|a|o|ololo
a0 |o(=m ool
= =o=lo=o0
e ll=]s]lla]lalie] el
=[O =00 O,

Proof of Distributive Rule

p
w

(A+B)- (A+C)

= (O=0=|0 =00

alalalalo|iololo
aAlalalalalalglo
S N RS LY PR N | S N o]
VY W U W L g g S e TR - BT o]

alalo|lolalaloo

=00 0= 000

Demorgan’s Theorem

a) Proof of equation (1):

Construct the two circuits corresponding to the functions A’. B’and (A+B)’
respectively. Show that for all combinations of A and B, the two circuits give identical

results. Connect these circuits and verify their operations.

Proof (via Truth Table) of DeMorgan’s Theorem AB=A+B

b) Proof of equation (2)

Construct two circuits corresponding to the functions A’+B’and (A.B)” A.B,
respectively. Show that, for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations.

o —
= Ry
y —|
—R
L>—Q HAY =Y
y —C

)]

Proof (via Truth Table) of DeMorgan’s Theorem A+B=4B

A+B A+B

0
1
1
1

Commutative Laws of Boolean Algebra

A+B=B+A

We will also use the following set of postulates:

P1:
P2:

P3:
P4:

P5:

P6:

Boolean algebra is closed under the AND, OR, and NOT operations.

The identity element with respect to * is one and + is zero. There is no identity
element with respect to logical NOT.

The * and + operators are commutative.

* and + are distributive with respect to one another. That is,
A*B+C)=(A*B)+(A+*C)and A+ (B+C)=(A+B)*(A+CQ).

For every value A there exists a value A’ such that A*A’ =0 and A+A’ = 1.

This value is the logical complement (or NOT) of A.

* and + are both associative. That is, (A*B)*C = A+(B+C) and (A+B)+C = A+(B+C).
You can prove all other theorems in boolean algebra using these postulates.

PROCEDURE:

1. Obtain the required IC along with the Digital trainer Kit.

2. Connect zero volts to GND pin and +5 volts to Vcc .

3. Apply the inputs to the respective input pins.
4. Verify the output with the truth table.

RESULT:

Thus the above stated Boolean laws are verified.

Ex.No.-2 CODE CONVERTOR

AIM:

To design and implement 4-bit
(i) Binary to gray code converter
(i) Gray to binary code converter
(iii) BCD to excess-3 code converter
(iv) Excess-3to BCD code converter

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION
X-OR GATE IC 7486
AND GATE IC 7408

OR GATE IC 7432

NOT GATE IC 7404
IC TRAINER KIT -
PATCH CORDS -

THEORY:

The availability of large variety of codes for the same discrete elements of
information results in the use of different codes by different systems. A conversion circuit
must be inserted between the two systems if each uses different codes for same
information. Thus, code converter is a circuit that makes the two systems compatible even
though each uses different binary code.

The bit combination assigned to binary code to gray code. Since each code uses
four bits to represent a decimal digit. There are four inputs and four outputs. Gray code is a
non-weighted code.

The input variable are designated as B3, B2, B1, BO and the output variables are
designated as C3, C2, C1, Co. from the truth table, combinational circuit is designed. The
Boolean functions are obtained from K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though
each uses a different binary code. To convert from binary code to Excess-3 code, the input
lines must supply the bit combination of elements as specified by code and the output lines
generate the corresponding bit combination of code. Each one of the four maps represents
one of the four outputs of the circuit as a function of the four input variables.

A two-level logic diagram may be obtained directly from the Boolean expressions
derived by the maps. These are various other possibilities for a logic diagram that
implements this circuit. Now the OR gate whose output is C+D has been used to
implement partially each of three outputs.

BINARY TO GRAY CODE CONVERTOR

TRUTH TABLE:

Binary Input Gray Code Output

o
w
o
N
W
=
U9)
o
()
w
@)
N
@
=
)
o

NI = === =]=]=]l=)
Rk loloookr|k|kr|lolololo
Rl |lololr|k|lookr|r|lolokr|l|lolo
ok |lolr|lorlok| ok lokrlolrlo
Rl Rk Rk oololo|lo|lolo|lo
olololor|r|kR|FR|FR|FR|IFL|IR|loloolo
olo|lr|k kiR ooookrlkrkikolo
ol rk|loo|kr|r|ookr|lrlolokrro

K-Map for G3

B1B0
B3B2

K-Map for G2

GZ2=B3+B2
K-Map for G1

B1BO
B3B2 00

00 O

1
01

11

10

G1=B1®B2

K-Map for Go

B1BO
B3B2 00

00

01

11

10

GO=B1®&B0

BINARY CODE

S
<
o
Q
<
@]
O
0
O
-

GRAY CODE TO BINARY CONVERTOR

GRAY CODE

TRUTH TABLE:

K-Map for Ba:

G1G0
G3G2 00

0

00

K-Map for Bo:

G1G0
G3G2

B2=G3®G2

K-Map for B1:

G1G0
G362

B1=G3®G2®G1

K-Map for BO:

B0 = G3®G2HG1EGO

LOGIC DIAGRAM:

G3 G2 G1 GO

BO=G3®%G2% G1%G0

.

B1=G3% G2% G1

>

_,)D B2= G3& G2

7486N

| B3=G3

TRUTH TABLE:

BCD input

BCD TO EXCESS-3 CONVERTOR

EXxcess — 3 output

B3

B2

G2

Gl

0

0

K-Map for E3:

E3 = B3 + B2 (B0 + B1)

K-Map for EZ:

00

0
-
A

E2=B2® (B1+ B0)

K-Map for Eq:

E1=B1&B0

K-Map for Eo:

EXCESS-3TO BCD CONVERTOR

TRUTH TABLE:

| Excess — 3 Input BCD Output

B3 B2 G3 G2

LOGIC DIAGRAM:

B3 B2 B1 BO

1 y—t

E3=B3+ B2 (B1+B0)
7432

E2=B2@& (B1+B0)

- P, E1=B1%B0

7404

E0=B0

EXCESS-3 TO BCD CONVERTOR

K-Map for A:

X3 X4

X1 XZ\

00

A =X1 X2+ X3 X4 X1

K-Map for B:

B=X2®(X3+X4)

K-Map for C:

X3 X4
X1 X2 00

X

00

C=X3®X4

EXCESS-3 TO BCD CONVERTOR

— A= X1(X2+X3 X4)

AAT::: 74L532

7408

21
D__:JD B=X2& (X3 + X4)
D._\ ’f whaes [7arsss

C=X3@®X4
m—

74L586

PROCEDURE:

M Connections were given as per circuit diagram.
(i) Logical inputs were given as per truth table
(iti) Observe the logical output and verify with the truth tables.

RESULT:

Thus the following 4-bit converters are designed and constructed.

(1) Binary to gray code converter
(i) Gray to binary code converter
(ili) BCD to excess-3 code converter
(iv) Excess-3 to BCD code converter

Ex.No.-3 ADDER AND SUBTRACTOR

AlIM:
To design and construct half adder, full adder, half subtractor and full
subtractor circuits and verify the truth table using logic gates.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION
AND GATE IC 7408

X-OR GATE IC 7486
NOT GATE IC 7404
OR GATE IC 7432
IC TRAINER KIT -
PATCH CORDS -

THEORY:

HALF ADDER:

A half adder has two inputs for the two bits to be added and two outputs one from
the sum ° S’ and other from the carry © ¢’ into the higher adder position. Above circuit is
called as a carry signal from the addition of the less significant bits sum from the X-OR
Gate the carry out from the AND gate.

FULL ADDER:

A full adder is a combinational circuit that forms the arithmetic sum of input; it
consists of three inputs and two outputs. A full adder is useful to add three bits at a time but
a half adder cannot do so. In full adder sum output will be taken from X-OR Gate, carry
output will be taken from OR Gate.

HALF SUBTRACTOR:

The half subtractor is constructed using X-OR and AND Gate. The half subtractor
has two input and two outputs. The outputs are difference and borrow. The difference can
be applied using X-OR Gate, borrow output can be implemented using an AND Gate and
an inverter.

FULL SUBTRACTOR:

The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full
subtractor the logic circuit should have three inputs and two outputs. The two half
subtractor put together gives a full subtractor .The first half subtractor will be C and A B.
The output will be difference output of full subtractor. The expression AB assembles the
borrow output of the half subtractor and the second term is the inverted difference output
of first X-OR.

TRUTH TABLE:

K-Map for SUM:

HALF ADDER

B
A 00

00

01

O

O

O

@

SUM =A’B + AB’

LOGIC DIAGRAM:

K-Map for CARRY::

CARRY = AB

FULL ADDER

TRUTH TABLE:

A

w
@]

PP PP OOOO
PP OOREFR OO
P ORPRORFRORO
PP PRPORFROOO
RPOOROFRRFrRO

K-Map for SUM

BC

A 00 01 10

o | (3 (1)
SHENICAE

SUM =A’B°’C + A’BC’ + ABC’ + ABC
K-Map for CARRY

BC
A

CARRY =AB +BC + AC

LOGIC DIAGRAM:

FULL ADDER USING TWO HALF ADDER

1
748mD ?
2

1

O

2

ABBA C

SUM

__iJH\AB+BC+AC
HIL~3 CARRY

HALF SUBTRACTOR

TRUTH TABLE:

2

BORROW

DIFFERENCE

K-Map for DIFFERENCE

B
A 00 01

o |()
OB

DIFFERENCE = A’B + AB’

K-Map for BORROW

01

(V)

BORROW =A’B

LOGIC DIAGRAM

FULL SUBTRACTOR

TRUTH TABLE:

A| B C |BORROW]| DIFFERENCE

P RPPFRPPFPOOOO
P PFRPOORFRLEFL OO
PFOPFRPORFRLRORKrO
P OO OoOkFrr kL, ko
P OOPFrRPORFrEFO

K-Map for Difference

BC

i 00 01 10

o 1]° | W
Qo |QG]e

Difference = A°’B°’C + A’BC’ + AB’C’ + ABC

K-Map for Borrow
BC

A

Borrow = A’B + BC + A’C

LOGIC DIAGRAM:

6 Difference

AFBEIC

6 Borrow
A'B+AC+BC

—. 8

10

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

1
g g 4

74@_,/) ?4ssm\]j) B980C
2

: 6 Difference

I 4 4

— .
74040 74080 }m AB+AC+BC
2

: 3 Borrow

PROCEEDURE:

M Connections are given as per circuit diagram.
(i) Logical inputs are given as per circuit diagram.
(ili) Observe the output and verify the truth table.

RESULT:

Thus, the half adder, full adder, half subtractor and full subtractor

circuits are designed, constructed and verified the truth table using logic gates.

Ex.No.-4a

4-BIT ADDER AND SUBTRACTOR

AIM:

To design and implement 4-bit adder and subtractor using basic gates and MSI

device IC 7483.

APPARATUS REQUIRED:

SL.NO.

COMPONENT

SPECIFICATION

IC

IC 7483

EX-OR GATE

IC 7486

NOT GATE

IC 7404

IC TRAINER KIT

1
2
3.
3
4

PATCH CORDS

THEORY:

4 BIT BINARY ADDER:

A binary adder is a digital circuit that produces the arithmetic sum of two binary
numbers. It can be constructed with full adders connected in cascade, with the output carry
from each full adder connected to the input carry of next full adder in chain. The augends
bits of ‘A’ and the addend bits of ‘B’ are designated by subscript numbers from right to
left, with subscript 0 denoting the least significant bits. The carries are connected in chain

through the full adder. The input carry to the adder is Cqg and it ripples through the full
adder to the output carry Cy.

4 BIT BINARY SUBTRACTOR:
The circuit for subtracting A-B consists of an adder with inverters, placed between

each data input ‘B’ and the corresponding input of full adder. The input carry Cg must be
equal to 1 when performing subtraction.

4 BIT BINARY ADDER/SUBTRACTOR:

The addition and subtraction operation can be combined into one circuit with one
common binary adder. The mode input M controls the operation. When M=0, the circuit is
adder circuit. When M=1, it becomes subtractor.

4 BIT BCD ADDER:
Consider the arithmetic addition of two decimal digits in BCD, together with an

input carry from a previous stage. Since each input digit does not exceed 9, the output sum
cannot be greater than 19, the 1 in the sum being an input carry. The output of two decimal
digits must be represented in BCD and should appear in the form listed in the columns.

ABCD adder that adds 2 BCD digits and produce a sum digit in BCD. The 2
decimal digits, together with the input carry, are first added in the top 4 bit adder to
produce the binary sum.

PIN DIAGRAM FOR IC 7483:

4-BIT BINARY ADDER

LOGIC DIAGRAM:

OUTPUT CARRY
INPUT DATA A

DATA OUTPUT

INPUT DATA B

4-BIT BINARY SUBTRACTOR

LOGIC DIAGRAM:

OUTPUT CARRY
INPUT DATA A

DATA OUTPUT

INPUT DATA B

4-BIT BINARY ADDER/SUBTRACTOR

LOGIC DIAGRAM:

OUTPUT CARRY
INPUT DATA A

DATA OUTPUT

INPUT DATA B

MODE SELECT (M)

M=0 (ADDITION)
M=1 [SUBTRACTION]

TRUTH TABLE:

Input Data A Input Data B Addition Subtraction
A3 | A2 | Al B3 | B2 | Bl S4 1S3 |S2 D4 | D3 | D2

S k== =R e

o|lolo|lo|o|r—r ||

PROCEDURE:
(1) Connections were given as per circuit diagram.

(i) Logical inputs were given as per truth table
(i) Observe the logical output and verify with the truth tables.

RESULT:

Thus the 4-bit adder and subtractor using basic gates and MSI device IC 7483 is
designed and implemented.

Ex.No.-4b PARITY GENERATOR AND CHECKER

AIM:

To design and verify the truth table of a three bit Odd Parity generator and checker.

APPARATUS REQUIRED:

SL. NO. NAME OF THE APPARATUS RANGE | QUANTITY
Digital IC trainer kit 1

1.

2. EX-OR gate IC 7486
3. NOT gate IC 7404
4. Connecting wires As required

THEORY:

A parity bit is used for the purpose of detecting errors during transmission of binary
information. A parity bit is an extra bit included with a binary message to make the number
of 1’s either odd or even. The message including the parity bit is transmitted and then
checked at the receiving end for errors. An error is detected if the checked parity does not
correspond with the one transmitted. The circuit that generates the parity bit in the
transmitter is called a parity generator and the circuit that checks the parity in the receiver
is called a parity checker.

In even parity the added parity bit will make the total number of 1’s an even
amount and in odd parity the added parity bit will make the total number of 1’s an odd
amount.

In a three bit odd parity generator the three bits in the message together with the
parity bit are transmitted to their destination, where they are applied to the parity checker
circuit. The parity checker circuit checks for possible errors in the transmission.

Since the information was transmitted with odd parity the four bits received must
have an odd number of 1’s. An error occurs during the transmission if the four bits
received have an even number of 1’s, indicating that one bit has changed during
transmission. The output of the parity checker is denoted by PEC (parity error check) and
it will be equal to 1 if an error occurs, i.e., if the four bits received has an even number of
I’s.

ODD PARITY GENERATOR

TRUTH TABLE:

INPUT OUTPUT

(Three bit message) | (Odd Parity bit)

>
@)

PP IPIOOClO|O

PP OOlFR,r| P OClO|T
O|lRr | P O|R,|O|O|F—]| T

el e R A I Nl A
P Ok O, | O|FL,|O

From the truth table the expression for the output parity bit is,
P(A,B,C)=X(0,3,5,6)
Also written as,
P=AB’C’+A’BC+AB’C+ABC’=(A ® B ® Q)¢

ODD PARITY GENERATOR

CIRCUIT DIAGRAM:

6__1l>o_ﬁ.. P= A ®B ®Cy

7404

ODD PARITY CHECKER

CIRCUIT DIAGRAM:

7404

ODD PARITY CHECKER

TRUTH TABLE:

INPUT OUTPUT
(4 - Bit Message Received) | (Parity Error Check)
B C P X

SL.NO.

O Nk~ w N e

[HEN
©

[HEN
=

[EEN
N

[HEN
w

[HEN
=

[EN
i

[EINY [FEN [N FEN) i N I N R 1 K==l k=1 =1 k=1 k=1k=1D>
RlRr|Rr|Rr|lo|lo|lo|lolr|kRr|R|R|lo|lo|lo|lo
R P OIO|IFRIFRPIOIOCIFR|IPIOIO|FR|IFRP|IO|O
R|lo|lr|lo|lr|lo|r|o|lr|o|r|o|r|lolr|o
R|lo|lolr|lo|lkr|r|lolo|lr|r|olr|lolo|r

[EEN
S

From the truth table the expression for the output parity checker bit is,
X (A,B,C,P)=X(0,3,5,6,9, 10, 12, 15)

The above expression is reduced as,
X=(A®B®C®@p

PROCEDURE:

1. Connections are Hlven as per the circuit d| rams.
2. For all the ICs 7 pin is grounded and 14 pin is given +5 V supply.
3. Apply the inputs and verify the truth table for the Parity generator and checker.

PIN DIAGRAM FOR IC 74180:

FUNCTION TABLE:

INPUTS

OUTPUTS

Number of High Data
Inputs (10 - 17)

SE e)

EVEN

ODD

EVEN

ODD

X

X

16 BIT ODD/EVEN PARITY GENERATOR

LOGIC DIAGRAM:

I7 1615 411312 1110

Ne N Y PN VAN VN VAN

High (or) Low
gh (or) 7

N

B 15 141312 1110

Y N VAN VN VAN

N

N
2 113121110 9 8

| C 74180 (2)

6

2

i
1 13

121110 9 8
14
IC 74180 (1)

TRUTH TABLE:

1716 151413121110

1716151413121110

Active

11000000

11 0000 00

11000000

11 0000 00

11000000

01 00O0O0O OO

16 BIT ODD/EVEN PARITY CHECKER

LOGIC DIAGRAM

Parity bit

71615 141312 11 10 7 615 41312 11 10

AN N Y PN VN VAN VAN

N N 1 RN PN N
2 113121110 9 8 2 113 121110 9 8

| C 74180 (2) IC 74180 (1)

6

TRUTH TABLE:

17161514 13121110 17°16°’1S°14°13°12°11° 10° Active

000 0O0OO0O0T1 00 0000 00

00000110 000001 10

00000110 000001 10

RESULT:

Thus the three bit and 16 bit odd Parity generator and checker circuits were
designed, implemented and their truth tables were verified.

Ex.No.-4c MAGNITUDE COMPARATOR

AlM:
To design and implement the magnitude comparator using MSI device.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION
AND GATE IC 7408
X-OR GATE IC 7486

OR GATE IC 7432
NOT GATE IC 7404
4-BIT MAGNITUDE COMPARATOR IC 7485

IC TRAINER KIT -

PATCH CORDS -

THEORY:

The comparison of two numbers is an operator that determine one number is greater
than, less than (or) equal to the other number. A magnitude comparator is a combinational
circuit that compares two numbers A and B and determine their relative magnitude. The
outcome of the comparator is specified by three binary variables that indicate whether
A>B, A=B (or) A<B.

A=A3 Ay A1 Ap
B=B3 B, B1 Bg

The equality of the two numbers and B is displayed in a combinational circuit
designated by the symbol (A=B).

This indicates A greater than B, then inspect the relative magnitude of pairs of
significant digits starting from most significant position. A is 0 and that of B is 0.

We have A<B, the sequential comparison can be expanded as

ASB = A3B3" + XgABy + XaXoA1B1 " + XaXoX1A0Bg"

A<B = A3'Bs + XaAn By + XaX2A; "B + XaXoX1Aq By

The same circuit can be used to compare the relative magnitude of two BCD

digits. Where, A = B is expanded as,

A=B=(A3+B3) (A2 +B)) (A1 +B1) (Ag+Bp)
N7 N7 N7 N7

X3 X2 X1 X0

PIN DIAGRAM FOR IC 7485:

B3
1(A<B)
1(A=B)
1(A>B)

A>B

A=B

8-BIT MAGNITUDE COMPARATOR

LOGIC DIAGRAM:

MSB MSB LSB LSB
A3 A2 A1 A0 B3 B2 B1 BO A3 A2 Al A0 B3 B2 B1 BO

i\ \ \ i\ ’ ‘ ‘ | ‘ ‘ ‘ ‘ ‘ \‘ Al A

15 13 12 10 1 14 11 o, [1e8) A8 515 13 12 10 1 14 11 9
1(A=B) A=B

IC 7485 (2) g | 16=6) 6 IC 7485 (1)
, | 1(a<B) A<B

16 8 16 8

5

7

VCC GND

TRUTH TABLE:

A

PROCEDURE:
Q) Connections are given as per circuit diagram.

(i) Logical inputs are given as per circuit diagram.
(iii) Observe the output and verify the truth table.

RESULT:

Thus the magnitude comparator using MSI device is designed and implemented.

Ex.No.-4d MULTIPLEXER AND DEMULTIPLEXER

AIM:

To design and implement the multiplexer and demultiplexer using logic gates
and study of 1C 74150 and IC 74154.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION

3 1/P AND GATE IC 7411
OR GATE IC 7432
NOT GATE IC 7404

IC TRAINER KIT -
PATCH CORDS

THEORY:

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller
number of channels or lines. A digital multiplexer is a combinational circuit that selects
binary information from one of many input lines and directs it to a single output line. The

selection of a particular input line is controlled by a set of selection lines. Normally there

are 2" input line and n selection lines whose bit combination determine which input is

selected.

DEMULTIPLEXER:

The function of Demultiplexer is in contrast to multiplexer function. It takes
information from one line and distributes it to a given number of output lines. For this
reason, the demultiplexer is also known as a data distributor. Decoder can also be used as
demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates.
The data select lines enable only one gate at a time and the data on the data input line will

pass through the selected gate to the associated data output line.

4:1 MULTIPLEXER

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

DATA IIP DATA OIP
—=

S1 so
DATA SELECT

FUNCTION TABLE:

S1 INPUTS Y

0 D0 — DO S1” S0’
0 DI — D1 S1’ S0
1

1

D2 — D2 S1 SO’
D3 — D3 S1 SO

Y =D0S1’S0’+D1S1’ S0 + D2 S1 S0’ + D3 S1 S0

TRUTH TABLE:

S1 Y =OUTPUT

0 DO

D1

D2

D3

CIRCUIT DIAGRAM FOR MULTIPLEXER:

S1 SO DO D1 D2 D3

{ ; 7404 ; ; 7404

74L511

|
| |

74L511

|
|
74L511
7432

74L511

1:4 DEMULTIPLEXER

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

> po
pal L —> D1l pataor
> D2

—— D3
S1 S0

DATA SELECT

FUNCTION TABLE:

S1 SO INPUT

X —=D0=XS1"S0’
X —-D1=XSI"S0
X —-D2=XSI1S0
X —=D3=XSI1S0

0
0
1
1

0
1
0
1

Y=XS1"S0’+ X S1’ S0 + X S1 S0’ + X S1 SO

TRUTH TABLE:

INPUT OUTPUT

(92}
[uitg
(92}
o
O
=
O
N
O
w

RPRiIRPrPPOO OO

Rl |lo|lo|r|r|lo|lo
Rlo|lr|lolr|lo|r|o
o|lo|lo|lo|lo|lo|r|o
olo|lo|lo|r|lo|lo|o
olo|lr|lo|lo|lo|lo|o
Rrlo|lo|lo|lo|lo|o|o

LOGIC DIAGRAM FOR DEMULTIPLEXER:

sS1 SO P

; ,_-‘ 7ao4a ; ; 7404

DO
——

D1
—4!—3,—

T!jiDZ

| s
74LS11

PIN DIAGRAM FOR IC 74150:

PIN DIAGRAM FOR IC 74154:

-

© 0 N & a0 bk WO N

PROCEDURE:

0] Connections are given as per circuit diagram.
(i) Logical inputs are given as per circuit diagram.
(i) Observe the output and verify the truth table.

RESULT:
Thus the multiplexer and demultiplexer using logic gates are designed and
implemented.

SHIFT REGISTER

To design and implement the following shift registers
(i) Serial in serial out

(i) Serial in parallel out

(iii) Parallel in serial out

(iv) Parallel in parallel out

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION

1. D FLIP FLOP IC 7474

OR GATE IC 7432

IC TRAINER KIT

PATCH CORDS

THEORY::
A register is capable of shifting its binary information in one or both directions is

known as shift register. The logical configuration of shift register consist of a D-Flip flop
cascaded with output of one flip flop connected to input of next flip flop. All flip flops

receive common clock pulses which causes the shift in the output of the flip flop. The

simplest possible shift register is one that uses only flip flop. The output of a given flip flop

is connected to the input of next flip flop of the register. Each clock pulse shifts the content
of register one bit position to right.

PIN DIAGRAM OF IC 7474:

SERIAL IN SERIAL OUT

LOGIC DIAGRAM:

PRE DATA

14 ilU UlB lél ill] UZB QUIPJY

DATAIIP ~2PR ~2PR
— 211D e 2D 20 P2 1D 1w 2D 20

3

1CLK -1 b 2CLK ~20 5 = 1CLK ~10 FA— t 2CLK ~20 5
~1CLR ~2CLR ~1CLR ~2CLR

Tl 7474N Ti3 74740 Tl 7474 Tl3 74740
i

CLR

TRUTH TABLE:

Serial In Serial Out
1 0

SERIAL IN PARALLEL OUT

LOGIC DIAGRAM:

OUTPUT
Qo
PRESET

1
14 Jio wmsB l4 lw uzB

~ZPR ~ZPR

Dk & Lin 104 1

2D 20 2 1D 108 2D 20

Eﬁ(——% 1CLK ~10F— o201k 20 B 1CLK ~10 ff— 2CLK ~2QPE-
7474 ’(

~1CLR ~ZCLR ~1CLR ~2CLR
1 13 7474 1 7474 13 7474

TRUTH TABLE:

OUTPUT

Qs

Qc

PARALLEL IN SERIAL OUT

LOGIC DIAGRAM:

OUTPUT

ol

1CLK ~10 ff—
~1CLR

2CLK ~20[8—
~2CLR

Tl 7474

Tiz 7474
i

7432

T
Lio ltl
~2PR
2D 20 Tz 10 Ty

~1CLR

1CLK ~10[%—

Jio

7432

Tl 7474

2D 20

2CLK ~20 =
~2CLR

T13 7474

CLR

TRUTH TABLE:

CLK

0

PARALLEL IN PARALLEL OUT

LOGIC DIAGRAM:

D3|DATA Q2 Output Q0
PRESET

1
J,tl Jio s 14 lm UZB

~2PR ~ZPR
1D 10Q 2D 20 1D 10 2D 20

G 1CLK ~10 - b 2CLK ~20 A ICLK ~10ff— 2CLK ~20f8-
~1CLR ~2CLR ~1CLR ~2CLR
1 7474 13 7474 1 7474 rg 7474

TRUTH TABLE:

DATA INPUT OUTPUT

Dg Dc QB Qc

0 0 0 0

0 1

PROCEDURE:

(1) Connections are given as per circuit diagram.
(i) Logical inputs are given as per circuit diagram.
(ili) Observe the output and verify the truth table.

RESULT:
The Serial in serial out, Serial in parallel out, Parallel in serial out and
Parallel in parallel out shift registers are designed and implemented.

Ex.No.-6 SYNCHRONOUS AND ASYNCHRONOUS COUNTER

AlIM:
To design and implement synchronous and asynchronous counter.

APPARATUS REQUIRED:

S.NO. NAME OF THE APPARATUS QUANTITY

Digital IC trainer kit

JK Flip Flop IC 7473
D Flip Flop IC 7473
NAND gate IC 7400

Connecting wires As required

THEORY:
Asynchronous decade counter is also called as ripple counter. In a ripple counter

the flip flop output transition serves as a source for triggering other flip flops. In other
words the clock pulse inputs of all the flip flops are triggered not by the incoming pulses
but rather by the transition that occurs in other flip flops. The term asynchronous refers to
the events that do not occur at the same time. With respect to the counter operation,
asynchronous means that the flip flop within the counter are not made to change states at

exactly the same time, they do not because the clock pulses are not connected directly to

the clock input of each flip flop in the counter.

A counter is a register capable of counting number of clock pulse arriving at its
clock input. Counter represents the number of clock pulses arrived. A specified sequence
of states appears as counter output. This is the main difference between a register and a
counter. There are two types of counter, synchronous and asynchronous. In synchronous
common clock is given to all flip flop and in asynchronous first flip flop is clocked by
external pulse and then each successive flip flop is clocked by Q or Q output of previous
stage. A soon the clock of second stage is triggered by output of first stage. Because of
inherent propagation delay time all flip flops are not activated at same time which results

in asynchronous operation.

PIN DIAGRAM FOR IC 7476:

CIRCUIT DIAGRAM:

PRE l lz l
~1PR ~2PR ~1PR ~2PR
13 10 23 2Q 17 10 27 2q R
B 1CLK b 2CLK t 1CLK t 2CLK
1K ~10 2K ~20 1K ~10Q 2K ~202
~1CLR ~2CLR ~1CLR ~2CLR
‘[3 7476 Ta 7476 13 7476 Tg 7476

t

CLR

TRUTH TABLE:

0
=
2
Qo
>
Q
=}

N[|0 (N O

O (00| |

[y
(=

[y
[y

ot
[\]

[y
w

[y
-

Ll = L =T O O =0 =T o = =T o = =]

- oo Huccwuccuwcog

(W) U NN N occon—n»-a»-ao—occog

el Ll Ll e Ll el e R =R =R =R =2 =R =R ==

[y
7]

LOGIC DIAGRAM FOR MOD - 10 RIPPLE COUNTER:

74000

b
~ZPR

2q A

B 2CLK

ZK ~20
~ZCLR

TRUTH TABLE:

CLK

QO
>
Q
0y)
Q
@
QO
O

Ol (N[OOI B|IWIN|F|O

O O|IFRP|IO|IFR|O|FR|O|IFr|O
OO | |O|O|F|Fk|O|O
@l iel o]l Jl il ol (o] o] e))
O|FRP|FRP|IO|I0|O|O|0|0|O|O

(BN
o

PIN DIAGRAM:

SYNCHRONOUS COUNTER

LOGIC DIAGRAM:

OUTPUT
Q3 Qo

PRESET

.
14 Jio uB lél lw UZB

T ~2PR ~2PR
———211p 10 2D 20 (2 1D 10 2D 20

—306 1CLK ~10 b 2CLK ~20 B & 1CLK ~1Q t2CLK ~20
~1CLR ~2CLR ~1CLR ~2CLR
1 Tia 1 13

CLK

TRUTH TABLE:

OUTPUT
Qe | Qc

PROCEDURE:

Q) Connections are given as per circuit diagram.
(i) Logical inputs are given as per circuit diagram.
(iii) Observe the output and verify the truth table.

RESULT:

Thus the synchronous and asynchronous counter are designed and implemented.

Ex.No.- 7 IMPLEMENTATION OF BASIC LOGIC GATES

AlIM:

To implement all the basic logic gates using Verilog and VHDL simulator.

LOGIC GATE SYMBOLS TRUTH TABLES

2 Input AND gate
A, B A B

0
0
1

2 Input OR gate

A+B
X]
. F 1
1
1
F
} F
F

NOT g;

I

A
a
1

2 Input NAND gate

A, B 4B

X

2 Input NOR gate _

¥
A, B A+E
1
X
}.‘
2 Input EXOR gate

A B A BB
0

2 Input EXNOR gate
A B A

VERILOG CODE

AND GATE

module and12(a,b,c);
input a;
input b;
output c;
assignc=a &b;
endmodule

OR GATE

module or12(a,b,d);
input a;
input b;
output d;
assignd=a|b;
endmodule

NAND GATE
module nand12(a,b,e);

input a;

input b;

output e;

assign e = ~(a & b);
endmodule

XOR GATE

module xor12(a,b,h);
input a;
input b;
output h;
assignh=a"b;
endmodule

XNOR GATE
module xnor12(a,b,i);

input a;

input b;

output i;

assigni =~(@”"b);
endmodule

NOR GATE

module norl2(a,b,f);
input a;
input b;
output f;
assignf=~(a| b);
endmodule

NOT GATE
module not12(a,g);

input a;

output g;

assign g = ~a;
endmodule

VERILOG CODE:

module and12(a,b,c);
input a;
input b;
output c;
assignc=a & b;
endmodule

AND GATE

OUTPUT WAVEFORM:

2,109,450, 0ps (,108,450400ps [2.109,45,500ps |
1) T T B {0 e B Y L

i 1l B M L

\ \ |

| .

2.103450,000ps 12,108,450, 100ps 2,108,450, 210ps
{ I o N I N el Y R 1 S (i [
|
|
|

\ | 1

OR GATE
VERILOG CODE:

module orl2(a,b,d);
input a;
input b;
output d;
assignd=a| b;
endmodule_

OUTPUT WAVEFORM:

1999,600ps |1,999,650ps |1999,700ps |1999,750ps |1999,800ps |19998%0ps |1,999,%00ps |1,999,950ps
S 0O Yl T e N 0 e T M N0 e T e 0 Y0 i O T

| | | | | |
|| ||

NOT GATE
VERILOG CODE:

module notl2(a,g);
input a;
output g;
assign g = ~a;
endmodulé

OUTPUT WAVEFORM:

L% A0 % 1,999,90qps |

LU L] Ll LIl LIl

EX-OR GATE

VERILOG CODE:

module xor12(a,b,h);
input a;
input b;
output h;
assign h=a"b;
endmodule

VHDL CODE:

library IEEE;

use IEEE.STD_LOGIC 1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;

entity xor_gate is
port (a,b : in std_logic ;
c : out std_logic);

end xor_gate;
architecture Behavioral o f xor_gate is

begin
c <=axorb;
end Behavioral;

OUTPUT WAVEFORM:

0us 1us 2 s
IIII|IIIIIIII|IIII

3 s

415
IIII|IIII

5 s

RESULT:

Thus all the basic logic gates are implemented and verified using Verilog and VHDL

simulator.

Ex.No.-8 COMBINATIONAL AND SEQUENTIAL CIRCUITS

AlIM:

To simulate the sequential and combinational circuits using HDL simulator (Verilog
and VHDL).

1. HALF ADDER

Truth Table

Input Output
C(Carry)
0

0
0
1

Circuit Diagram Graphical Notation

Equations
S (Sum) =A"B
C (Carry) =AB

Verilog Code:

module hadd(a,b,s,c); input a;
input b;

output s;

output c;

assigns=a”"b;

assignc=a &b;

endmodule

Output:

492,916,750 ps [492,916,800ps |492,916,850ps |492,916,900ps [492,916,950ps |492,917,000ps |492,917,050 ps

| —) - | | I I | I | —

[I [J I [I
] [] [

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL; entity halfadder is

port(

a:instd_logic; b : in std_logic;

sum : out std_logic; carry : out std_logic);

end halfadder;

architecture Behavioral of halfadder is begin

sum <= (a xor b); carry <= (a and b); end Behavioral;

Input:
a:l;

b:1;
Sum: 0
Carry: 1

2,6?6,93H ps 2,676,93% ps 2,676,93% ps 2,676,93‘1 ps 2,676,93% ps 2,676,93% ps

) Y Y Y)) Iy o |

2. FULL ADDER

Truth Table

w

n
C
<

L L =l E=lE=1E=1p">]

P PIOO|FR,I kL, OO

R O|lR,|O|lFR,| OO0

P OO, Ol kO

K- Map for sum K-map for Carry

":{ B'C" B'C C BC

=
0 Al oo 0 1 0

® e [[0

H.ADDER SUM =A’B’C +A’BC’ + AB’C’ + ABC Cout = A’BC + AB’C + ABC’ +ABC
SUME ~ ANBAC Couts (A"B)C+AB

Circuit Diagram:

Verilog Code:

module fadd(a,b,c,s,cout);

input a;

input b;

input c; output s;

output cout;

assigns=(a”b)~c;

assign cout = (a & b)|(b & ¢)|(c & a);
endmodule

Output :

71745500 BRI 1IMENps [WN1746%00 LI M0ps [5ET, 14,7500 1567.‘.74,3I1x 97, 174830 ps li
- PR RANTI M A PR MR T M S i

=

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity fulladder is

port(

a :instd_logic;

b :instd_logic;

cin : in std_logic;

sum : out std_logic;

carry : out std_logic

);

end fulladder;

architecture Behavioral of fulladder is
begin

sum <= (a xor b xor cin);

carry <= (a and b) or (b and cin) or (a and cin);
end Behavioral;

Qutput:

1,999,995 ps 1,999,996 ps 1,999,997 ps
1 1 1 11 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1

1,999,998 ps
11 1 1 11 1 1

1,999,999 ps
11 1 1 I 11 1 1

3. HALF SUBTRACTOR

Verilog Code:

module hsub(a,b,d,bor);
Input a;

Input b;

output d;

output bor;

assign d=)a”*b);

assign bor = (~a&~b);
end module

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,;
entity halfsubtractor is

port(

a:instd_logic;

b:instd _logic;

dif : out std_logic;

bor : out std_logic

)i

end halfsubtractor;

architecture Behavioral of halfsubtractor is
begin

dif <= a xor b;

bor <= ((not a) and b);

end Behavioral;

Output:

1J9?9J48q ps 13?9,48]] s 1,9?9,48% ps 1,9?9148% ps 119?91481 ps 119?9&85] ps

4. FULL SUBTRACTOR

Verilog Code:
module sub(a,b,c,d,b out);

input a;

input b;

input c;

output d;

output bout;

assignd = (a”™b) " c;

assign bout = (~a & b)|(b & ¢)|(c & ~a);
endmodule

Output:

272,181,300 272,181,350 ps [272,181,400ps |272,181,450ps |272,181,500ps |272,181,550 ps
¥ AP O N A S N i W i, A) I i 1

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity fullsubtractor is

port(a: instd_logic;

b:instd _logic;

cin :in std_logic;

dif : out std_logic;

bor : out std_logic);

end fullsubtractor;

architecture Behavioral of fullsubtractor is begin
dif <= a xor b xor cin;

bor <= (((not a) and b) or ((not &) and cin) or (b and cin));
end Behavioral;

INPUT:
a:0;

b :0;

Cin:1
Difference : 1
Borrow : 1

Output:

1,999,995 ps 1,999,996 ps 1,999,997 ps 1,999,993 ps 1,999,999 ps

5. MULTIPLEXER

Verilog Code:

module mux4tol(Y, 10,11,12,13, sel);
output Y;
input 10,11,12,13;
input [1:0] sel,
regy,
always @ (sel or 10 or 11 or 12 or 13)
case (sel)

2'b00:Y=10;
2'b01:Y=I1;
2'b10: Y=I2;
2'b11: Y=I3;
endcase
endmodule

Output:

1,500 ns 2,000 ns 2,500 ns 3,000 ns 4,000 ns 14,500 ns <
1 1

ho

T

e

B
 CET—

gy

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD _LOGIC_UNSIGNED.ALL; entity mux is

port(

inp : instd_logic_vector(3 downto 0); sel : in std_logic_vector(1 downto 0); muxout
:out std_logic --mux output line);

end mux;

architecture Behavioral of mux is begin

process(inp,sel) begin

case sel is when "00" =>

muxout <= inp(0); -- mux O/P=1 I/P-- when "01" =>

muxout <= inp(1); -- mux O/P=2 I/P-- when "10" =>

muxout <= inp(2); -- mux O/P=3 I/P-- when "11" =>

muxout <= inp(3); -- mux O/P=4 I/P-- when others =>

end case; end process;
end Behavioral;

Truth Table:

INPUTS OUTPUT

inp0) inpl inp3 muxout

0 l

I

NOTE : I means binary input which is either 0 or |

6. DEMULTIPLEXER

Verilog Code:

module demux(S,D,Y);
Input [1:0] S;
Input D;
Output [3:0] Y; reg Y;
always @(S OR)
case({D,S})
3°b100: Y=4"b0001;
3’b101: Y=4’b0010;
3’b110: Y=4’b0100;
3’b111: Y=4’b1000;
default:Y=4"b0000;
endcase
endmodule

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity demux is

port(

dmuxin : in std_logic;

sel : in std_logic_vector(1 downto 0);

oup : out std_logic_vector(3 downto 0)

);

end demux;

architecture Behavioral of demux is

begin

process(dmuxin,sel)

begin

case sel is

when "00" =>

oup(0) <= dmuxin; --1 dmux o/p = dmux i/p--
oup(1) <='0"

oup(2) <="0";

oup(3) <='0"

when "01" =>

oup(0) <="0";

oup(1) <= dmuxin; --2 dmux o/p = dmux i/p--
oup(2) <="0";

oup(3) <='0"

when "10" =>

oup(0) <="07;
oup(l) <="0

oup(2) <= dmuxin; --3 dmux o/p = dmux i/p--

oup(3) <=0’
when "11" =>
oup(0) <=0
oup(1) <="0"
oup(2) <=0,

oup(3) <= dmuxin; --4 dmux o/p = dmux i/p--

when others =>
end case;

end process;
end Behavioral;

Truth Table:

INPUTS

OUTPUTS

sel0

dmuxin

oupl

oup2

0

0

0

1

|

0

0

0

1

0

0

NOTE : I means binary input which is either 0 or 1

0us

1us

205
IIII|IIII

U5
IIII|IIII

4 s
IIII|IIII

F s
IIII|IIII

.&| s

L EE

il

b B oupl30]

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dff is

7.DFLIPFLOP

port(

clk :instd_logic; --clock input

rst : in std_logic; --active low,synchronous reset

d:instd_logic; --d input

g,gbar : out std_logic --flip flop outputs ie,Qn+1 and its complement
)i
end dff;

architecture Behavioral of dff is

begin

process(clk,rst)

begin

if rising_edge(clk) then

if (rst ='0") then --active low,synchronous reset
q <=0

gbar <="1',

else

q<=d

gbar <= not(d);

end if;

end if;

end process;

end Behavioral;

Output:

781,972,000ps [78L,972,050ps [781,973,000ps [781,073,050ps [7BL,973100ps [781,973,150ps

(LLPL AL AL AL AL AL

L L
L L
I L T

8. T FLIPFLOP

Verilog Code :

module tffeq(t,rst, clk,gp, gbar); input t,rst, clk;
output gp, gbar; wire Q;
reg qp;
always @ (posedge clk) if (rst)
gp=0; else
ap =q " t; assign gbar = ~ qp;
endmodule

9. JKFLIPFLOP

Verilog Code:

module jkff(jk,pst,clr,clk,gp,gbar);
input [1:0] jk;
input pst,clr,clk;
output gp,gbar;
reg ap,
wire Q;
always @ (posedge clk) if (pst)
qp=1;
else
begin
if (clr)
qp=0;
else
begin
case (jk)
2'b00: gp=q;
2'b01 : gp = 1'b0;
2'010 : gp =1'bl;
2'bll:qgp=-~q;
default gp =0;
endcase
end
end
assign gbar = ~q;
assign q = qp;
endmodule

OQutput:

2,879,800 ps

2,880,60qps
P A

B jki0)

181

..

10. RIPPLE COUNTER

Verilog Code:

module ripple(clkr,st, t,A,B,C,D);
input clk,rst,t;

output A,B,C,D;

Tff TO(D,clk,rst,t);

THf T1(C,clk,rst,t);

Tt T2(B,clk,rst,t);

Tff T3(A,clk,rst,t);
endmodule

module Tff(q,clk,rst,t);
input clk,rst,t;

output g;

reg q;

always @ (posedge clk)
begin

if(rst)

q<=1’b0; else

if(t)

q<=~0;

end

endmodule

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;

--use UNISIM.VComponents.all;

entity counter is

Port (rst:in STD_LOGIC,;

clk:in STD_LOGIC;

led : out std_logic_vector(3 downto 0)

);

end counter;

architecture Behavioral of counter is
signal reg :std_logic_vector(3 downto 0);
begin

process(rst,clk)

begin

if rst ="'1" then

reg <= "0000";

elsif rising_edge(clk) then

reg <=reg + 1;

end if;

end process;

led(3 downto 0) <= reg(3 downto 0);

end Behavioral;

177,764 40ps |IT]7e4d60ps (1774 s (ITTTeAS0ps (7T ps L7764 SA0ps (17776460
l

S | I I O

{10 % 11§ opoo) 0001 ¥ 0010 0011 ¥ 0100 3 0f01 Ofio W ol ¥ foo0 i 001 ¥ 1010 ol
|
110 W 1111 ¥ opoo) o000l ¥ o0i0 W 00l ¥ 0M00 ¥ 0100 F oL W ol f 1000 3 1001 ¥ 100 i

11. UPDOWN COUNTER

Verilog Code:

module updowncount (R, Clock, clr, E, up_down, Q);
parameter n = 4,

input [n-1:0] R;

input Clock, clr, E, up_down;
output [n-1:0] Q;

reg [n-1:0] Q;

integer direction;

always @ (posedge Clock)
begin

if (up_down) direction = 1;
else direction = -1;

if (clr) Q<=R;

else if (E) Q <= Q + direction;
end

endmodule

UP Counter:

_ BN PASLI0N BASAN PHSILA BHSLA0ps psn s | pesgo pHsng

D 111 11l

T one : L FLEL LA FL R mL R PR AL
o o |

g dr

The 1

1IEI up_down 1

» B QB 111 .. {0000) 0001 4" 0010) 0011 {0100) 0101 ¥ 0110) 0111 { 1000) 1001 f 1010 ¥ 1011 ¥ 1100) 1101 § 1110) 111
p W directionBL0] 00000000000000000¢ 00000400000000000000009000000001
!

» M npLo) 00000000000000000€ 00000({%000000000000OUQUUOOOO100
1 1

| 0000) 0001

DOWN Counter:
e e] e

» B R3O 111
1 clock 1
‘iE! dr 0
he |
‘i up_down 0

b B0 o100 27O)T 70 0T 100) 0T Y 1070 Y 1061 000) GTL Y Orio) O) 0100 Y GOTL 0010) 000 Y 0000) TEIT)

p N directionBL0] 11111111111111111] FEEEEt EEEEEEEEEERRERURI KERERRRLE]

» B nBLO 00000000000000000(0000090000000000000000p000000100

12. SHIFT REGISTER

a. Serial In Serial Out

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
--library UNISIM;

--use UNISIM.VComponents.all;

entity hj is

port(

clk : in std_logic;

rst : in std_logic;

si: in std_logic;

so: out std_logic

);
end hj;

architecture Behavioral of hj is

signal temp : std_logic_vector(3 downto 0);
begin

process(clk,rst)

begin

if rising_edge(clk) then

if rst ="'1" then

temp <= (others=>'0");

else

temp <= temp(2 downto 0) & si;

end if;

end if;

end process;

so <= temp(3);

end Behavioral;

OQutput:

EEEET 0 oy Beme mesn B

35,655,820 ps

}E ck [I O
rst

|

15 s]

b B templn] 1000 i oopo iooot §oooil W oitd

b. Parallel In Parallel Out

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL,;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
--library UNISIM;

--use UNISIM.VComponents.all;
entity hj is

port(

clk : instd_logic;

rst : in std_logic;

po: out std_logic_vector(3 downto 0);
pi: in std_logic_vector(3 downto 0)

);

end hj;

architecture Behavioral of hj is

signal temp : std_logic_vector(3 downto 0);
begin

process(clk,rst)

begin

if rising_edge(clk) then

if rst="1"then

temp <= (others=>'0");

else

temp <= pi(3 downto 0);

end if;

end if;

end process;

po <= temp(3 downto 0);

end Behavioral;

OQutput:

2?4,846,[|ISD s 2?4,846&80 ps |274,846, I]DD ps |274,846, I]ZD ps [274,846, H‘ID s 546, 1]60 ps

T ok] L L L L L LT

-lE. rst
» B pal30] goit
» B pila] Gt
b B temp[3:0] oLt

RESULT:

Thus the sequential and combinational circuits are designed and implemented using
HDL simulator (Verilog and VHDL).

